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Elements of Ordinary Differential Initial
Value Problem Approximation

1.1 INTRODUCTION

To obtain accurate numerical solutions to differential equations govern-
ing physical systems has always been an important problem with scientists
and engineers. These differential equations: basically fall into two classes,
ordinary and partial, depending on the number of independent variables
present in the differential equations: one for ordinary and more than one
for partial. ‘

The general form of the ordinary differential equation can be written as

L[y] =r (1.1n)

where L is a differential operator and r is a given function of the indepen-
dent variable 7. The order of the differential equation is the order of its
highest derivative and its degree is the degree of the derivative of the highest
order after the equation has been rationalized. If no product of the dependent
variable y(r) with itself or any of its derivatives occur, the equation is said to
be linear, otherwise it is nonlinear. A linear differential equation of order m
can be expressed in the form :

L= § Oy 0 =r0) (12

in which f,(r) are known functions. The general nonlinear differential equa-
tion of order m can be written as

F(t,y, 9, -0, 0, y™) = 0 (1.3)
or ,V(m)(f) = f(’, y’ y'y Joey y(ll"‘l)) (l-4)
which is called a canonical representation of differential equation (1.3). In
such a form, the highest order derivative is expressed in terms of the lower
order derivatives and the independent variable. The general solution of the
mth order ordinary differential equation contains m ‘independent arbitrary
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constants. In order to determine the arbitrary constants in the general solu-
tion if the m conditions are prescribed at one point, these are called initial
conditions. The differential equation together with the initial conditions is
called the initial value problem. Thus, the mth order initial value problem
can be expressed as :

y("‘)(t) = f(t, y, ¥, e ).(m-l))

PO (te) = y'P, p == 0,1,2, ...,m—1 (1.5)
It the m conditions are prescribed at more than onc point, these arc called
boundary conditions. The differential equation together with the boundary

conditions is known as the boundary value problem. We shall now discuss
the basic concepts needed for the solution of initial value problems.

1.2 INITIAL VALUE PROBLEMS

The mth order initial value problem of Equation (1.5) is equivalent to
the following system of m first order equations:

Vo= Z"| == Uy -~ oytg) = xo

vy = valte) == 1,
",',,A.._| == Uy Pmy(te) .\'{)'" 2
{":,, o f(’, Uy Uy woey ) 1';:1(/()) s .\'{'“I =D (i.(\)
In vector notations it can be written as
dv .
A 0¥, (1) = M 1.7
dt
where LRI (TR SN /M LN

f(’, V) = [7’2 U3 eee /", Upy U3y ovey I';u)]T,
m = D e Y

We shall, therefore, be concerned with methods for finding out numerical
approximations to the solution of the equation

W f, 0 50) = xo (8

dr
However, before attempting to approximate the solution numerically, we
must ask if the problem has any solution. This can be answered easily in
the case of initial value problem for ordinary differential equation by
Theorem 1.1,

THEOREM 1.1 We assume that f(1, y) satisfies the following conditions:

(1) f(. v) is a real function,
(ii) Sl v) is defined and continvous in the strip
! e [10~ 'I’]’ v F: {—OO. w)~
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(iii) there exists a constant L such that for an y t € [to, b) and for any two
numbers y, and y,
[ y)=ft,y) | K Lipn—y2l,
where L is called the Lipschitz constant.

Then, for any yo the initial value problem (1.8) has a unique solution y (1)
for 1€ [to, b).

We will always assume the existence and uniqueness of the solution and
also that f(s, y) has continuous partial derivatives with respect to 7 and y
of as high an order as we desire.

1.3 DIFFERENCE EQUATIONS

In order to develop approximations to differential equations, we define the
following operators:

Ey(1) = y (t-+h) The shift operator
ay()) = y@+h)—-y (@) The forward-difference operator
pt) =y (@)—y(@—h) The backward-difference operator

)=y (;+ %)—- y (t— —g—) The central-difference operator
pe) = -12_[ y (r+ -—g—)+ y (1— ';L)] The average opérator
Dy(t) = y'(t) The differential operator

where 4 is the difference interval.

Repeated applications of the difference operators lead to the following
“higher order differences:

» \]
4 y1) = 3 (— 1P FGETJ y t+(n=K)h) (1.9)
7 1) =§ (-1 T:!_E)-!- y (t—kh) (1.10)
Py = (1P sy -+ =) i

For linking the difference operators with the differential operator. we con-
sider Taylor’s formula

y(t+h) = y (1) +hy'(D+ —";.— YO+ (1.12)
In operator notations we can write ' i

Ey (1) = (1+hp+(1'-%),1 + ) D)
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A kth order linear inhomogeneous difference equation "with constant
coefficients is of the form

do}’n+h+a| yu+b-|+ cos +agy. = gn (].14)

wherea;, j =0, 1, ..., k, are constants independent of n, and ao # 0,
a # 0.

The solution y, of Equation (1.14) consists of a solution to the homoge-
neous equation, say y®, and a particular solution, say y{’ of the inhomo-
geneous part.

Substituting g, = 0 in (1.14), we gct the homogeneous difference equa-
tion

o ynskta  yashyt oo +axysn =0 (1.15)
To find the solution of (1.15), we use the trial solution
Yn = Af' (1.16)

where 4 # Ois a constant and £ is a number to be dctermined.
Inserting (1.16) in (1.15), we find that nontrivial solutions exist if § is a
root of the polynomial

at+a, &'+ ... +ax =0 1.17)

This equation is called the characteristic equation of the difference equation
(1.15).

Thus, if ¢, are the distinct roots of (1.17), then we may write

o =§b,£; = ’};b,exp(n log £,) (1.18)

where b, are the arbitrary constants.

Let us assume now that (= £;) is a double root of (1.17), and that all
other roots ¢;, j = 3, 4, ..., k, are distinct. Then we would get k—1 solu-
tions of the form ¢4, £3, ..., £3. However, it can easily be verified by substi-
tution that if £, is a double root, then nf} is also a solution of (1.15). Thus
the. general solution of (1.15) becomes

W= b 3-4byn €1+ :Z‘sb, & (1.19)
In general, if the characteristic Equation (1.17) has roots §;,, = 1,2, ..., p,
and the roots £; has multiplicity y,,~ whcregw = k, ther the general
solution of (1.15) is given by

VY& =[by+ban+bisnin—1)+ ... +by,n(n—1)...(n—7,-- 2}
+[bz|+bzzn+b2;n(n-—l)+---+b2y,n(n—l)...

: o (n—y2+2)K3

oot [bp1+bp2 n+bps n(n— n+"°+b~', n(n—1)... _

...(n- Yp+2)]f: (1.20)



